
Vernier Calipers

<u>Aim</u>: 1. To find the volume of a Rectangular Block

- 2. To find the internal volume of a Calorimeter
- 3. To find mass of water that can be taken in the Calorimeter

Apparatus: Vernier Calipers, Rectangular block, Calorimeter etc

Theory:

Volume of the Rectangular Block = **Length** x **Breadth** x **Thickness** of the rectangular block Inner Volume of the Calorimeter = $\pi r^2 D$

Where r is the inner volume and D is the depth of the Calorimeter given.

All the dimensions are measured using the Vernier Calipers.

Mass of water that can be taken in the calorimeter = Inner Volume of the Calorimeter x Density of Water

Density of Water =
$$1000 \text{ kg/m}^3$$

Total Reading = $MSR + (VSR \times LC)$

Where **MSR** is the Main Scale Reading, **VSR** is the Vernier Scale Reading and **LC** is the Least Count of the Vernier Calipers.

$$LC = \frac{1}{n} \times Value \text{ of a Main Scale Division}$$

Where \mathbf{n} is the total number of divisions of the vernier scale

Observations:

Zero Error = Nil Total number of divisions

Value of a main Scale division = mm of the Vernier n = div 1msd = cm $LC = \frac{1}{n}x1msd = cm$

Dimension	Sl. No	MSR cm	VSR div	MSR + (VSR x LC) cm	Mean cm
Length of the Rectangular Block	1				
	2				
	3				L =
	4				
	5				
	6				

Dimension	Sl. No	MSR cm	VSR div	MSR + (VSR x LC) cm	Mean cm
	1				
	2				
Breadth of the	3				B =
Rectangular	4				
Block	5				
	6				
	1				
	2				
Thickness of the	3				
Rectangular	4				T =
Block	5				
	6				
Dimension	Sl. No	MSR cm	VSR div	MSR + (VSR x LC) cm	Mean cm
	1				
	2				
Inner diameter of	3				
the Calorimeter	4				d =
	5				
	6				
	1				
	2				
Depth of the	3				
Calorimeter	4				D =
	5				
	6				

Calculations:

Volume of the Rectangular Block = $\mathbf{L} \times \mathbf{B} \times \mathbf{T}$ = cm³ | m³ | Inner diameter of the Calorimeter | d | = | Inner radius of the Calorimeter | r = d/2 | = | Inner Volume of the Calorimeter | $\pi r^2 D$ = cm³ | cm³

Mass of water that can be taken in the calorimeter $\;$ = Inner Volume of the Calorimeter x Density of Water

= kg = kg

Results:

1. Volume of the given Rectangular block = m^3

2. Inner Volume of the given Calorimeter = m^3

3. Mass of water that can be taken in the Calorimeter = kg