Vernier Calipers

<u>Aim</u>: 1. To find the volume of a Cylindrical Block

- 2. To find the volume of a Sphere
- 3. To find the density of the material of cylinder

Apparatus: Sphere, Cylindrical block, Calorimeter etc

Theory:

Volume of the Cylindrical Block = $\pi r^2 L$, Where L is the length of the Cylinder and Radius $r = \frac{D}{2}$ (D is the diameter of the Cylinder)

Density of the Cylinder $\rho = \frac{Mass}{Volume}$

Volume of the Sphere $V = \frac{4}{3}\pi r^3$ and $r = \frac{d}{2}$

Where r is the radius and d is the diameter of the Sphere

All the dimensions are measured using the Vernier Calipers.

Total Reading = **MSR** + (**VSR** x **LC**)

Where **MSR** is the Main Scale Reading, **VSR** is the Vernier Scale Reading and **LC** is the Least Count of the Vernier Calipers.

 $LC = \frac{1}{n} \times Value \text{ of a Main Scale Division}$

Where \mathbf{n} is the total number of divisions of the vernier scale

Observations:

Zero Error= NilValue of a main Scale division (1msd) =mm =Total number of divisions of the Vernier n=div

$$LC = \frac{1}{n} \times 1 \, msd =$$
 cm

Date:

1. Volume of the Cylinder

Dimension	Sl. No	MSR cm	VSR div	MSR + (VSR x LC) cm	Mean cm
Length of the	1 2 3				-
Cylindrical Block	4 5 6				L =
Diameter of the Cylindrical	1 2 3 4				
Block	5 6				D =

Calculations:

Volume of the Cylindrical Block = $\pi r^2 L$ =

=	m ³
Mass of the Cylindrical block (given) =	kg

Density of the Cylinder $\rho = \frac{Mass}{Volume} =$

2. Volume of the Sphere

Dimension	Sl. No	MSR cm	VSR div	MSR + (VSR x LC) cm	Mean cm			
	1							
	2							
Diameter of	3							
the Sphere	4				d =			
	5							
	6							
Radius of the sp	here r=	$\frac{d}{2} =$	m					
Volume of the S	Sphere	$V = \frac{4}{3}\pi r^3$	m ³					
Results:								
1. Volume of the	e given (Cylindrica	=	m^3				
2. Density of the	e materia	al of the C	=	kg/m ³				
3. Volume of the	e given S	Sphere	=	m^3				

=

kg/m³

kg/m³

cm³