Spherometer

<u>Aim</u> : To find the radius of curvature of the spherical surface (concave/convex) using Spherometer

Apparatus:

Spherical (Convex/Concave) surface, Base plate, Spherometer etc

Principal

Radius of Curvature of the Spherical surface is given by

$$R = \frac{L^2}{6h} + \frac{h}{2}$$

where \mathbf{L} is the average distance between the legs of the spherometer and \mathbf{h} is the height or depression of the spherical surfaces

The height/depression can be measured using the Spherometer

Total reading (h) = PSR + (CSR x LC)

Where PSR – Pitch Scale Reading CSR – Circular Scale reading

If N is the total no. of divisions on the circular scale

 $Least Count (L.C.) of the spherometer = \frac{\text{Pitch of the spherometer screw}}{\text{Number of divisions on the circular scale}} = \frac{p}{N}$

Where pitch (P) is the vertical distance moved by the central screw in one complete rotation of the circular disc

$$Pitch = \frac{Distance moved}{Number of rotations}$$

Observations

1. To find the average distance between the legs of the spherometer

Distance between the leg	Mean L (cm)		

L = cm = m

2. To find the height / depression of the Spherical surfaces

Value of smallest division on the vertical pitch scale = mm

$$Pitch = \frac{Distance moved}{Number of rotations} = mm = mm$$

Total no. of divisions on the circular scale (N) =

$$LC = \frac{Pitch}{N} = mm = mm$$

Spherometer placed on	SI No	PSR mm	CSR div	Total Reading PSR+(CSRxLC)	Mean mm
Horizontal Plane Surface	1				
	2				r=
	3				
	4				
	5				
Spherical Surface	1				
	2				r ₁ =
	3				-1
	4				
	5				

Height $\mathbf{h} = \mathbf{r}_1 - \mathbf{r} =$ mm= m

Calculations

Radius of Curvature of the Spherical surface

$$R = \frac{L^2}{6h} + \frac{h}{2} = m$$

<u>Result:</u>

Radius of Curvature of the Convex/Concave Surface =

m