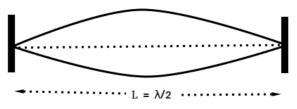
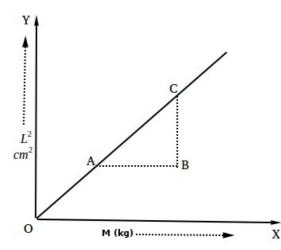
<u>Sonometer - II</u>

AIM: To verify the relation between the tension of a wire and resonating length. Also to find the mass of the given body.


<u>APPARATUS</u>: Sonometer apparatus, tuning forks, slotted weight, rubber hammer ,body etc **THEORY**:


Every object has a natural frequency. If the rate of energy is applied to the object matches the natural frequency, the object vibrate with maximum amplitude, then the resonance occurs.

The frequency
$$\mathbf{F} = \frac{v}{\lambda} = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$$

where $\mathbf{T} = \mathbf{Mg}$ is the tension of the

string.

And μ is the mass per unit length (linear density) of the wire and **m** is the mass which produce tension.

If frequency **F** remains constant, we find that $\frac{M}{L^2}$ is a constant

If **l** is the resonating length for an unknown mass (**m**),

kg/cm²

we can write
$$\frac{m}{l^2} = \frac{M}{L^2}$$

Therefore unknown mass $\mathbf{m} = \frac{M}{L^2} l^2$
From the graph $\frac{M}{L^2} = \frac{AB}{BC}$

kg

OBSERVATIONS:

Trial No	the sonometer wire	Resonating Length of Sonometer wire (L) cm			L ²	$\frac{M}{I^2}$ Kg/cm ²
	(M) kg	1	2	Mean	cm ²	L^2
1						
2						
3						
Unknown Mass (m)				1 =	Mean $\frac{M}{L^2}$ =	
CALCULATIONS:						

From the graph, $\frac{M}{L^2} = \frac{AB}{BC} = \text{kg/cm}^2$ Mean $\frac{M}{L^2} =$

Unknown Mass $\mathbf{m} = -\frac{M}{I^2} = l^2$

=

RESULTS:

- is found to be a constant. The relation between tension of the wire and resonating 1. length is verified
- 2. Mass of the given mass kg =