<u>Sonometer - I</u>

<u>AIM</u>: To verify the relation between the frequency and resonating length. Also to find the frequency of the given tuning fork.

<u>APPARATUS</u>: Sonometer apparatus, tuning forks, slotted weight, rubber hammer etc

THEORY:

Every object has a natural frequency. If the rate of energy is applied to the object matches the natural frequency, the object vibrate with maximum amplitude, the resonance occurs.

The frequency $\mathbf{F} = \frac{v}{\lambda} = \frac{1}{2L} \sqrt{\frac{T}{\mu}}$

where T is the tension of the string and μ is the mass per unit length (linear density) of the wire. Which are constants.

Then ($\mathbf{F} \mathbf{x} \mathbf{L}$) = a constant

If **l** is the resonating length for an unknown frequency (**f**),

we can write $\mathbf{f} \mathbf{x} \mathbf{l} = \mathbf{F} \mathbf{x} \mathbf{L}$

Therefore unknown frequency $\mathbf{f} = \frac{F \times L}{I}$

From the graph **F x L** = $\frac{AB}{BC}$

OBSERVATIONS:

Trial No	Frequency of the tuning fork (F) Hz	Resonating Length of Sonometer wire (L) cm			$\frac{1}{-1}$ cm ⁻¹	FxL
		1	2	Mean	L	Hz cm
1						
2						
3						
					Mean	
Unknown Frequency (f)				1 =	(F x L) =	
CALCULATIONS:						
From the graph $\mathbf{F} \mathbf{x} \mathbf{I} = \frac{AB}{B}$ – Hz cm						

From the graph, $\mathbf{F} \mathbf{x} \mathbf{L} = \frac{AB}{BC} = = Hz \text{ cm}$ Mean ($\mathbf{F} \mathbf{x} \mathbf{L}$) = Hz cm

Unknown Frequency $\mathbf{f} = \frac{Mean(F \times L)}{l} =$ = Hz

<u>RESULTS</u>:

- **1. F x L** is found to be a constant. The relation between frequency and resonating length is verified
- **2.** Frequency of the given tuning fork = Hz