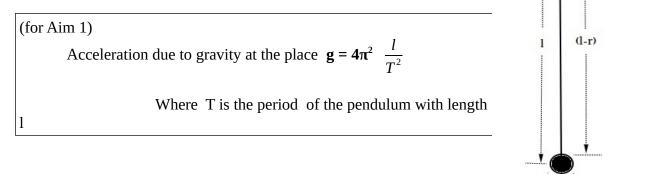
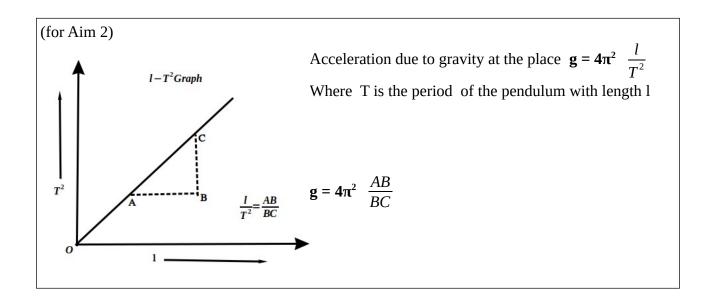
The Simple Pendulum


<u>AIM</u>

- 1. To determine the Period of a Simple Pendulum with different lengths and to find the acceleration due to gravity at the place
- 2. To determine the Period of a Simple Pendulum with different lengths and hence to find the acceleration due to gravity at the place by plotting l-T² graph


<u>APPARATUS</u>

Simple Pendulum, metre scale, stop clock, vernier calipers etc.

THEORY

d

OBSERVATIONS (for Aim 1)

Diameter of the pendulum bob $\mathbf{d} = \mathbf{cm}$ cm Radius of the bob $\mathbf{r} = \mathbf{d}/\mathbf{2} = \mathbf{cm}$

Trial No	Length of the pendulum (l) cm	(l-r) cm	Time taken for 20 Oscillations		$T = \frac{t}{20} s$	$\frac{l}{2}$ cm/s ²	
			1	2	Mean (t) s	$1 - \frac{1}{20}$ s	$\overline{T^2}$ cm/s ²
1							
2							
3							
4							
5							
6							
Mean $\frac{l}{T^2}$ =					$cm / s^2 =$		cm / s ²
1					=		m/s ²

=

 m/s^2

CALCULATIONS (for Aim 1)

Acceleration due to gravity at the place $\mathbf{g} = 4\pi^2 \frac{l}{T^2}$ =

OBSERVATIONS (for Aim 2)

Diameter of the pendulum bob **d** = cm Radius of the bob r = d/2 = = cm

Trial	Length of the pendulum (l) cm	(l-r) cm	Time taken for 20 Oscillations			$T = \frac{t}{20} s$	T ²
No			1	2	Mean (t) s	$1 - \frac{1}{20}$ s	(s ²)
1							
2							
3							
4							
5							
6							

CALCULATIONS (for Aim 2)

From the graph
$$\frac{l}{T^2} = \frac{AB}{BC} = \frac{cm / s^2}{s^2}$$

$$= m/s^{2}$$
Acceleration due to gravity at the place $\mathbf{g} = 4\pi^{2} \frac{l}{T^{2}} = 4\pi^{2} \frac{AB}{BC} = m/s^{2}$

=

=

RESULTS

- 1. It is found that $l T^2$ graph is a straight line
- 2. Acceleration due to gravity at the place m / s^2 =
- 3. Acceleration due to gravity at the place (from graph) m / s^2 =

 $/s^2$

 m/s^2