<u>Resonance Column I</u>

<u>AIM:</u> To find the velocity of sound in air at room temperature using the resonance column by determining two resonance positions.

<u>APPARATUS</u>: Resonance column apparatus, Tuning forks ,Rubber hammer etc.

THEORY:

Resonance occurs when

1. the length of air column is equal to onefourth of the wavelength of the sound waves (first resonance).

For this
$$I_1 = \frac{\lambda}{4}$$

2. the length of air column is equal to three-fourth of the wavelength of sound waves (second resonance).

For this
$$I_2 = \frac{3\lambda}{4}$$

Using these equations,

we get $v=f\lambda=2f(l_2-l_1)$

OBSERVATIONS:

Trial No	Frequency of tuning fork, f (Hz)	First resonating length, l1			Second resonating length, l2			v =
		1	2	Mean (cm)	1	2	Mean (cm)	$2f(l_2-l_1)$ cm/s
1								
2								
3								
4								

Mean Velocity of sound =

cm/s =

m/s

RESULT:

1. Velocity of sound at room temperature = m/s