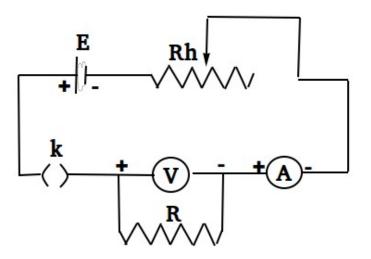
Ohm's Law I

 $\underline{\mathbf{AIM}}$: To Determine the resistivity of the material of the given wire by Ohm's law. Screw gauge is supplied


APPARATUS: Cells, Ammeter, Voltmeter, Rheostat, Key, Screw Gauge, Meter Scale, Connecting wires etc

THEORY: At constant temperature, the current passing through the conductor is directly proportional to the potential difference across the conductor.

That is **V** α **I** or $\frac{V}{I} = R$ the resistance of the conductor.

The resistivity of the material of the conductor $\rho = \frac{\pi r^2 R}{L}$

where ${\bf r}$ is the radius and ${\bf L}$ is the length of the conductor.

OBSERVATIONS:

1. To find the resistance of the wire (R)

Least Count of the ammeter = A

Least Count of the voltmeter = V

Length of the resistance wire L= cm

= m

Trial No	Ammeter Reading (I) Ampere	Voltmeter Reading (V) Volts	$R = \frac{V}{I}$ Ω	Mean R Ω
1				
2				
3				
4				
5				
6				
7				

2. To find the radius of the wire (r)

Value of One Pitch Scale Division

Pitch of the screw
$$P = \frac{Distance\ Moved}{Number\ of\ Rotations} = mm$$

Number of Divisions on the head scale

$$N =$$

Least Count LC =
$$\frac{Pitch}{N}$$
 =

Zero Coincidence = Divisions

Zero Correction = Divisions

Sl No	Pitch Scale Reading (PSR) mm	Observed Head Scale Reading (HSR)	Corrected Head Scale Reading (Corr. HSR)	Total Reading PSR + (Corr. HSR x LC)	Mean (d) mm
1					
2					
3					
4					
5					
6					

Radius of the wire
$$r = \frac{d}{2} = cm = m$$

CALCULATIONS:

The resistivity of the material of the conductor $\rho = \frac{\pi r^2 R}{L}$ =

Ω m

Ω

RESULT:

- 1. Voltage is found proportional to the current. Hence Ohm's Law is verified
- 2. Resistance of the given wire =
- 3. Resistivity of the material of the wire $= \Omega m$