Newton's Law of Cooling

<u>**AIM</u>**: To study the rate of cooling by drawing time-temperature graph <u>**APPARATUS**</u>: Calorimeter and stirrer, thermometer, stop watch, hot water etc <u>**THEORY**</u>:</u>

According to Newton's Law of Cooling, rate of cooling of an object is directly proportional to mean temperature difference between the cooling substance and the surrounding

That is
$$\frac{d\theta}{dt}\alpha(\theta-\theta_0)$$

where θ is the temperature of the
hot substance and θ_0 is the temperature
of the surrounding.
 $\frac{d\theta}{dt}$ is the rate of fall of θ^{e_C}
temperature.
OBSERVATIONS:
Room temperature $\theta_0 = {}^{\circ}C$

Sl No	Temp. of hot water in the Calorimeter $\theta^0 C$	Time (sec)	Sl No	Temp. of hot water in the Calorimeter $\theta^0 C$	Time (sec)
1	70		5	50	
2	65		6	45	
3	60		7	40	
4	55		8	35	

From the Graph

Temp Range $(\theta_1 - \theta_2)$ °C	$\begin{array}{c} \text{Mean Temp} \\ \theta = \frac{\theta_1 + \theta_2}{2} ^{\circ}\text{C} \end{array}$	Rate of Cooling $\frac{d \theta}{dt} = \frac{AC}{BC} ^{\circ}C$	Difference of Temp $\theta - \theta_0$ °C	$\frac{\left(\frac{d\theta}{dt}\right)}{\left(\theta-\theta_{0}\right)} \mathrm{s}^{-1}$
70 – 60	65			
60 – 50	55			
50 – 40	45			

It is found that rate of fall of temperature $\frac{d\theta}{dt}$ is proportional to temperature difference between the cooling substance and the surrounding $\theta - \theta_0$

RESULT:

- 1. Verified Newton's Law of Cooling
- 2. It is found that the rate of decrease of temperature of the water is quickly at higher temperatures and slowly at lower temperatures.