Helical Spring II

<u>Aim</u>:

1. To find the spring constant of the given Helical Spring using Oscillation method also to determine the mass of the given body.

2. To draw M-T² graph for a Helical Spring and to determine spring constant from the graph.

<u>Apparatus:</u>

Helical spring Apparatus, weight hanger with slotted weight, unknown mass etc.

Principle:

(For Aim 1) Time period of the oscillation of a spring is given by $T = 2\pi \sqrt{\frac{M}{K}}$ Spring Constant $K = 4\pi^2 (\frac{M}{T^2})$ where **M** is the mass suspended. If **t** is the time period for the unknown mass **m**, Unknown mass = $(\frac{M}{T^2})t^2$

(For Aim 2)

Time period of the oscillation of a spring is given by $T = 2\pi \sqrt{\frac{M}{K}}$

Spring Constant $K = 4\pi^2 (\frac{M}{T^2})$ where **M** is the mass suspended, If **t** is the time period for the unknown mass **m**,

Observations: (For Aim 1)

Sl No	Mass in the Helical Spring M gm	Time for 20 Oscillations (s)			Period T = $\frac{Time}{T}$	T ²	\underline{M}_{g/s^2}	
		1	2	Mean	20	s^2	T^2 B'^3	
1								
2								
3								
4								
5								
6								
Unknown mass(m)					t =	S	$t^2 =$	s ²

Mean
$$\frac{M}{T^2}$$
 = g/s² =

Calculations: (For Aim 1)

Spring Constant
$$K = 4\pi^2 (\frac{M}{T^2}) =$$
 N/m = N/m

Unknown Mass =
$$(\frac{M}{T^2})t^2$$
 = kg = kg

Observations: (For Aim 2)

Sl No	Mass in the Helical Spring M gm	Time for 20 Oscillations (s)			Period T = $\frac{Time}{Time}$	T ²	
		1	2	Mean	20	S^2	
1							
2							
3							
4							
5							
6							

Calculations: (For Aim 2)

From graph
$$\frac{M}{T^2} = \frac{AB}{BC} =$$

 $=$
 $g/s^2 =$
 g/s^2
Spring Constant $K = 4\pi^2 (\frac{M}{T^2}) =$
 $N/m =$
 N/m

<u>Results:</u>

1. Mass of the given body	=	kg
2. Spring Constant of the Helical Spring	=	N/m
3. Spring Constant of the Helical Spring (from graph)	=	N/m