# <u>Helical Spring I</u>

- 1. To find the spring constant of the given Helical Spring using Load Extension method also to determine the mass of the given body.
- 2. To draw the load extension graph of a helical spring and determine the spring constant from graph

# <u>Apparatus</u>:

Helical spring Apparatus, weight hanger with slotted weight, unknown mass etc.

# Principle:



## (For Aim 1)

According to **Hooke's** Law, Load is proportional to the Extension.

Spring Constant  $K = \frac{Load}{Extension} = (\frac{M}{L})g$ 

where M is the mass suspended, g is the acceleration due to gravity at the place and L is the extension.

If *l* is the extension produced for the unknown mass m,

unknown mass =  $\left(\frac{M}{I}\right)l$ 

### <u>Aim</u>:

# **<u>Observations</u>**: (For Aim 1)

| Sl             | Mass Suspended              | Reading of the Pointer on (cm) |           |      | Extension      |                                 |
|----------------|-----------------------------|--------------------------------|-----------|------|----------------|---------------------------------|
| N<br>0         | in the Helical<br>Spring gm | Loading                        | Unloading | Mean | $L=(r-r_0)$ cm | $\left(\frac{M}{L}\right)$ g/cm |
| 1              | m <sub>0</sub> +            |                                |           |      |                |                                 |
| 2              | m <sub>0</sub> +            |                                |           |      |                |                                 |
| 3              | m <sub>0</sub> +            |                                |           |      |                |                                 |
| 4              | m <sub>0</sub> +            |                                |           |      |                |                                 |
| 5              | m <sub>0</sub> +            |                                |           |      |                |                                 |
| m <sub>0</sub> | + unknown mass              |                                |           |      | l = cm         |                                 |

Reading of the pointer with deadload  $r_0 =$ cm

| Mean | $\left(\frac{M}{L}\right)$ | = |  |
|------|----------------------------|---|--|
|------|----------------------------|---|--|

=

#### **Calculations:**

| Spring Constant K | $= \left(\frac{M}{L}\right) g =$ | N/m |
|-------------------|----------------------------------|-----|
|-------------------|----------------------------------|-----|

=

Unknown Mass = 
$$\left(\frac{M}{L}\right)l$$
 =

g =

g/cm

kg/m

kg

**<u>Observations</u>:** (For Aim 2) Reading of the pointer with deadload  $r_0 =$ cm

| Sl     | Mass Suspended in          | Reading | of the Pointe | Extension |                |
|--------|----------------------------|---------|---------------|-----------|----------------|
| N<br>0 | the Helical Spring<br>(gm) | Loading | Unloading     | Mean      | $L=(r-r_0)$ cm |
| 1      | m <sub>0</sub> +           |         |               |           |                |
| 2      | m <sub>0</sub> +           |         |               |           |                |
| 3      | m <sub>0</sub> +           |         |               |           |                |
| 4      | m <sub>0</sub> +           |         |               |           |                |
| 5      | <u> </u> m <sub>0</sub> +  |         |               |           |                |

**Calculations:** 

| From graph | $(\frac{M}{L})$ | = | $\frac{AB}{BC}$ | = | g/cm = |      | g/cm |
|------------|-----------------|---|-----------------|---|--------|------|------|
|            |                 |   |                 | = |        | kg/m |      |

Spring constant from graph

$$K = \frac{M}{L}g = N/m = N/m$$

# <u>Results:</u>

| 1. Mass of the given body                             | = | kg  |
|-------------------------------------------------------|---|-----|
| 2. Spring Constant of the Helical Spring              | = | N/m |
| 3. Spring Constant of the Helical Spring (From graph) | = | N/m |