THE LINE S PECTRA OF THE HYDROGEN ATOM

Creation of Photon

According to the third postulate of Bohr's model, when an atom makes a transition from the higher energy state with quantum number n_i to the lower energy state with quantum number $n_f (n_f < n_i)$, the difference of energy is carried away by a photon of frequency v_{if}

Frequency of emitted Photon

$$h v_{if} = \frac{me^4}{8\epsilon_0^2 h^2} \left\langle \frac{1}{n_f^2} - \frac{1}{n_i^2} \right\rangle$$
$$v_{if} = \frac{me^4}{8\epsilon_0^2 h^3} \left\langle \frac{1}{n_f^2} - \frac{1}{n_i^2} \right\rangle$$

Rydberg Constant = $1.03 \times 10^7 \text{ m}^{-1}$

Is the Wave number

Line Spectra

