THE MOVING COIL GALVANOMETER

The galvanometer consists of a coil, with many turns, free to rotate about a fixed axis in a uniform radial magnetic field. There is a cylindrical soft iron core which not only makes the field radial but also increases the strength of the magnetic field.

When a current flows through the coil, a torque acts on it. This torque is given by $\mathbf{T} = \mathbf{NI} \mathbf{AB}$ Since the field is radial by design, we have taken $\sin \theta = 1$

The magnetic torque NIAB tends to rotate the coil. A spring provides a **counter** torque **k** ϕ that balances the magnetic torque **NIAB**; resulting in a steady angular deflection ϕ . In equilibrium

$k\phi = NI AB$

where k is the **torsional constant** of the spring;

The deflection ϕ is indicated on the scale by a pointer attached to the spring.

We have

Conversion of Galvanometer to Ammeter

For measuring currents, the galvanometer has to be connected in series, and as it has a large resistance, this will change the value of the current in the circuit. To overcome these difficulties, one attaches a small resistance r_s, called shunt resistance, in parallel with the galvanometer coil; so that most of the current passes through the shunt.

The resistance of this arrangement is given by $R_G r_s/(R_G+r_s)$ which is nearly equal to r_s since $R_G >> r_s$

The current sensitivity of the galvanometer as the deflection per unit current

The scale of this ammeter is calibrated and then graduated to read off the current value with ease

Conversion of Galvanometer to Voltmeter

The galvanometer can also be used as a voltmeter to measure the voltage across a given section of the circuit. For this it must be connected in parallel with that section of the circuit. Further, it must draw a very small current, otherwise the voltage measurement will disturb the original set up by an amount which is very large

Resistance of the voltmeter is now, $R_G + R$ which is nearly equal to R (large)

The scale of the voltmeter is calibrated to read off the voltage value with ease.

We define the voltage sensitivity as the deflection per unit voltage.

$$\frac{\phi}{V} = \left(\frac{NAB}{k}\right) \frac{I}{V} = \left(\frac{NAB}{k}\right) \frac{1}{R}$$