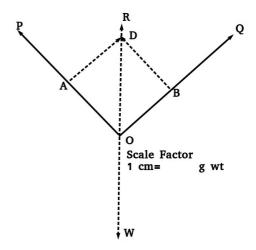
PARALLELOGRAM LAW OF FORCES I

AIM

1) To find the weight of the given body using parallelogram law of vectors.

APPARATUS


Gravesand's apparatus, slotted weights, given body, glass plates, paper, pins etc.

THEORY

If ${\bf P}$ and ${\bf Q}$ are the known weights and ${\bf W}$ is the weight of the unknown body, which are in equilibrium and acting as co-planar concurrent forces, then according to the Parallelogram law of vectors

W = **Diagonal x Scale Factor**

Where the diagonal vector represents the resultant of the forces P and Q

OBSERVATIONS

Scale Factor 1 cm = g wt

Trial No		Q	OA	OB	Length of the Diagonal (OD) cm	Weight of the body OD x Scale Factor (g wt)
	g wt	g wt	cm	cm	Diagoliai (OD) Cili	OD x Scale Factor (g wt)
1						
2						
3						
4						
5						
6						

Weight of the given body = g wt = kg wt

RESULT:

Weight of the given body = kg wt